
(NASA-CR-128295) TRANSPORT OF SOLAR FLARE N72-3277
7

PROTONS: COMPARISON OF A NEW ANALYTICMODEL WITH SPACECRAFT 4MEASURE-ENTS J.E.Lupton, et al (California Inst. of Tech.) Unclas~ulo 1971 7 p 
CSCL 03B G3/29 16332

: '' - . PASADENA, CALIFOR NIA

~~~~I i i III I

__ __ __ __ I



TRANSPORT OF SOLAR FLARE PROTONS -

COMPARISON OF A NEW ANALYTIC MODEL

WITH SPACECRAFT MEASUREMENTS

J. E. Lupton and E. C. Stone

California Institute of Technology

Pasadena, California 91109

July 1971

SRL 71-3



FLUID FORCES AND MOMENTS ON FLAT PLATES

1. NOTATION AND UNITS

Three coherent systems of units are given below.

SI

mdistance between two plates in series

span of plate m

normal force coefficient in uniform flow, N/½pV~S

chord of plate m

distance from datum in shear flow (Section 3.6) m

correction factors for effect of turbulence (page 3)

longitudinal integral scale of turbulence* in
free stream m

normal force on plate tN

constant defining velocity profile in shear flow
(Section 3.6)

Reynolds number, Vmc/V

area of plate m2

open area of perforated plate m2

velocity m/s

average free-stream velocity in uniform flow . m/s

effective average velocity in shear flow
(Section 3.6). m/s

root mean square value of longitudinal component
of velocity fluctuations* due to turbulence in
free stream m/s

distance along centre line of centre of pressure
behind leading edge of plate. m

angle of incidence between' plate and free
stream degree

free-stream kinematic viscosityftt m2/s

free-stream density kg/m:

British
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* For explanations of this term see ESD Item No.70013 or Reference 2. Some typical values are given
in Table I.

t IN = 1 newton = 102.0 x 10-
3 kgf. .

** 1 pdl = 31.08 x 10
-

3 lbf.

if Kinematic viscosity = dynamic viscosity/density.

I** 1 slug = 32.17 lb.
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TRANSPORT OF SOLAR FLARE PROTONS - COMPARISON
OF A NEW ANALYTIC MODEL WITH SPACECRAFT MEASUREMENTS

J. E. Lupton and E. C. Stone

California Institute of Technology, Pasadena, California, U.S.A., 91109

An analytic solution has now been obtained to the complete Fokker-Planck
equation including the effects of convection, interplanetary deceleration
and acceleration, corotation, and anisotropic diffusion with K,, constant
and with K,:r2 . With the boundary of the diffusing region at 2.3 AU, a
solar wind velocity of 400 km sec- 1, K,, 7x10 2 0 cm2 sec-1, and impulsive
injection on the line of force connecting to the earth, the solution
yields a time to maximum for the particle flux of ~10 h and an exponen-
tial decay time of %25 h. Several solar flare particle events have been
observed with the Caltech Solar and Galactic Cosmic Ray Experiment on
OGO-6. Detailed comparisons of the calculated time dependence of the
fluxes with these observations of 1-70 MeV protons show that the model
adequately describes both the rise and decay times, indicating that
K,, = constant is a better representation of conditions inside 1 AU than
is K,, or.

1. Introduction. The propagation of energetic solar flare particles through
interplanetary space has been studied both theoretically and experimentally for
a number of years. Although Parker (1965) had included a term for adiabatic
deceleration in his general formulation of particle propagation, analytical des-
criptions of solar flare particle propagation only recently have included adia-
batic effects (Fisk and Axford, 1968; Forman, 1970; Forman, 1971).

Experimentally, the first evidence for energy-change processes in inter-
planetary space was reported by Murray, et al (1971) using data from the Caltech
Solar and Galactic Cosmic Ray Experiment on OGO-6 (Althouse, et al, 1967). Since
that report, additional flare events have been studied and compared with the
above analytic descriptions of particle propagation. As expected, the predicted
flux risetime was too slow or the predicted time dependence of the decay was
other than the observed exponential dependence. Therefore, the following analy-
tical solution for particle propagation was derived.

2. The New Solution. The Fokker-Planck equation, which describes the
propagation of cosmic ray particles in interplanetary space, can be written:

at + v.(V - 1 al (aTn - E V = a (aTn)Y1 V.3 Jfl . 3 ar aT

where n is the particle density, V the solar wind velocity, T the particle
kinetic energy, a - (T + 2 moc2 ) / (T + moc2) and $ is tire diffusion tensor. If
the solar wind velocity V is assumed to be Independent of the spatial para.-
meters, the equation then reduces to:

.-_ + v. (rV) 2V a (aTn) (2)
\/ V·(nV) --(K·) 3r aT
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The right hand side, which treats the adiabatic deceleration caused by the solar
wind expansion, can be generalized to include the effects of any energy change
process which can be characterized by a time constant TE(r)-r. The equation
then becomes:

+- -1 .) .-

a- + v-(nV) - v.(K.vn) 1 (n) (3)
0

where TE(r) = T r. This includes the effects of anisotropic diffusion, con-
vection, and energy change. Note that adiabatic deceleration is a special case
of Eq. 3 with TE (r) = 3r/4V and a(T) = 2.

A solution to Eq. 3 has been found which describes solar flare particle
transport, using the following simplifying assumptions:

1. The particle density n depends only on radial distance r, azimuthal angle 0,
time t, and particle kinetic energy T.

2. The energy T is not treated as an independent variable.

3. The solar wind velocity V is radial and independent of r, e, and t.

4. The density is a power law in kinetic energy n(r,e,t,T) = no(r,e,t)T-Y.

5. The particles are impulsively injected at r=r
s

at time t=O.

6. The density n must remain finite as r -* 0 (this is a substitute for a more
realistic but more complicated boundary condition specified at r=rS).

7. A perfectly absorbing boundary exists at r=L so that n(L,e,t,T) = 0.

8. The diffusion tensor K, which is independent of T, is defined by
KL = K

1
r2 and K,, = K = constant.

As demonstrated previously by Burlaga (1967) and Forman (1971), when K, is
assumed to vary as r2, the equation can be separated as follows:

n(r,o,t,T) = Q(e,t)R(r,t)T- Y (4)

For 6-function injection at e = 0, the azimuthal part of the solution can be
expanded as (Burlaga, 1967)

Q(e,t) = exp [- lK(Q+1)t] (2z+l)Pt(cos e) (5)

The equation for the radial part of the solution becomes

~RZ 1] --. r 2 -a; R Vi + 1or a(T) ()
Dr Tr 

IK 0rI0 D
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where the terms relating to diffusion, convection, and energy change are still
clearly evident.

The new result presented here involves the following eigenvalue expansion
for the solution to Equation 6:

co

Fo /2a 'a r,)'2 Fo ·(/2P2 c 2 
exp (V(r-rFo r sŽ Fo . F / 2 a nn r -t/Tn (7)

R(r,t) = A rrs n=1 N e

where Fo(n,x) is the regular Coulomb wave function (Abramowitz and Stegun, 1964),
and the an are defined by the eigenvalue equation Fo(3/2 J,, c L) = 0. The other
parameters are defined as follows:

B = V(2C-1)/K (8)

C = 1 + (y-1)/2VTo (9)

T n = 4K/(4K2an + V2 ) (10)

Nn= O(/2a, a2 x)] dx (11)
0

The constant A is an arbitrary normalization determined by the number of
particles injected. In the limit as V + 0, this solution reduces to

- -- (n~rrrs\ . I nirr \ (- n2 IT2 Kt\
R(r, 2A sin sini exp ' (12)rrsL i nL L

n= 1
which is identical to the ADB solution obtained by Burlaga (1967).

3. The Behavior of the Solution. Figure 1 shows the time profile of the
solution at r = 1 AU for typical values of the parameters. The total solution
n(t) is the product of the radial part R(t) and the azimuthal part Q(o',t), with
the transformation o' = eo + P t included to describe the effects of.corotation.
In this example eo =-1000, which corresponds to a flare position of -.550 E solar
longitude. Figure 1 clearly demonstrates that the radial part of the solution
yields rise times of ~10 h and decay time constants of %25 h using a reasonable
value for K4 .

It can be seen from Equation 7 that at large times the first term in the
expansion dominates and the time profile decays exponentially with TDEC T1-.
This decay time constant is a function of the solar wind velocity V, the diffusion
coefficient K , the outer boundary position L, and the energy-change parameter
C. As expected, TD]iC 1/K,, for large values of K,, as the solution approaches
Burlacja's model.

4. CoI La]iLson with Spacecraft Measurements. A preliminary comparison of the
new solulution has been made with actual measurenments of solar flare particle time
proliles. Although we have not yet optimized the values of all the parameters
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Fig. 1. The density n(t) predicted by
the solution is shown as a function of
time. The radial part R(t) of the
solution and the azimuthal Q(e',t) are
shown separately.
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involved, reasonable estimates have been
made, and the resulting fits to the
actual data are shown in Figures 2 and
3.

Fig. 2. Comparison of the calculated
flux profile (solid lines) with solar
flare event observations. The follow-
ing values of the parameters were used:

L .7 :l.n2n A o ° nl -0 0
The 7 June 1969 event, shown in K 1a, I/.uX.U1V - .UXU'--' cm'/sec,

Figure 2, has a time-to-maximum of K; Q3x1020 cm2 /sec, C ,1.4 - 1.8,
'40 h, due to the '100° distance in L = 2.3 AU, oo =-100°.
solar longitude between the flare and
the direct-connected field line. Consequently, the rise of the event is largely
determined by the time profile of the Q(e',t) function while the decay phase is
defined by the radial function R(t) (see Figure 1). The model approximates the
observed profiles quite well using L = 2.3 AU and values of K,, 8x102°0 cm2 /sec.

The 2 November 1969 event, which occurred at 900 W solar longitude, is
separated by only %350 from the direct-connected field line and therefore has a
much more rapid rise. Figure 3 demonstrates that reasonable fits can be achieved
using L = 2.3 AU for energies from 1 to 70 MeV. It should be emphasized that for
this November event the radial part of the solution alone determines the principal
features of both the rise and decay, and that this event thus provides a critical
test for the solution presented here.
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5. Conclusion. The new work
presented here consists of re-solving
the differential equation for the radial
part of the particle propagation, using
K,1 = constant, and including the
effects of convection and energy change
that are known to be important at low
energies. In every other respect the
assumptions made are the same as those
used by Burlaga and Forman. Although
the detailed dependence of the
solution on all of the parameters has
not been completely investigated, the
preliminary results reported here show
that the solution can reproduce both the
rise and decay phases of actual flare
data quite well.

It has already been shown that a
solution with Ka, -r describes the
decay profile quite well, but predicts
a rise which is longer than the 5 - 15
hours frequently observed (Forman, 1971
The rise profile is very sensitive to
the value of rK near the sun, since
diffusion is the principal mode of
particle transport early in a flare
event. Since the present solution
describes both the rise and decay
phase of a flare event, there is an
indication that the actual behavior
of K1 1 inside 1 AU is better approxi-
mated by K,1 = constant than by
K1 1 r.

This solution also includes the
effects of adiabatic deceleration,
convection, and a non-adiabatic
energy-change process, suggesting
that further comparisons with data may
provide a more thorough evaluation of
interplanetary acceleration and de-
celeration processes.
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Fig. 3. Comparison of the calculated
flux profile (solid lines) with solar
flare event observations. The following
values of the parameters were used:

K 1, .2.5x102° - 1.6x1021 cm2 /sec
K 1 . 1.5x10 20 - 1.4x1021 cm2/sec,
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